
A Summary on Systems of Systems Engineering1

Johan Lukkien

May 2015

Introduction
 ‘Systems-of-systems’ (SoS) is a relatively modern term for systems that are composed of independent
(autonomous) subsystems that are full-blown systems by themselves in every way. While there is
growing awareness of its importance there is no clear agreement about the architectural principles
guiding the design of SoS nor about the process of engineering them.

Thinking in terms of SoS brings a 180o change in viewpoint. In traditional embedded systems design
(being a subsystem in itself) we focus on how to effectively design those embedded subsystems to
implement the functions of a device.This device plays a role in the physical world. With the introduction
of embedded networking we move to cyber-physical systems in which these embedded subsystems now
form the nodes in a larger whole, also crossing the borderlines of different systems. From this
perspective we regard the larger ICT context as the enabler of the involved embedded subsystems. SoS
is about how to design, engineer, maintain and evolve a composition of subsystems while
acknowledging the fact that these subsystems remain independent, serving their own functions, with
their own management and lifecycles.

In this section we discuss what SoS really is about based on a review of existing literature on the topic.
We examine the state of the work in this area, focusing on the following aspects:

a) What are engineering methodologies, processes and lifecycle management defined for SoS
engineering?

b) What are architecting principles and perhaps styles suggested for SoS?
c) Which existing examples of SoS, that have benefited from recent insight, can we learn from?
d) Which concrete solutions exist, and what are open issues?

As above we speak about ‘subsystems’ in order to discriminate between the parts. Subsystems,
however, are complete systems by themselves as explained above.

Systems-of-Systems
The work of Maier [Maier 1998] is one of the earlier systematic discussions on SoS. Maier introduces
some defining properties intrinsic to an SoS: operational independence (subsystems have an
autonomous behavior, goal and useful existence), managerial independence (subsystems are managed
by different authorities) and evolutionary independence (subsystems evolve independently). In addition,

1 This document was the basis for a section on State-of-the-Art in the Artemis Accus project.

geographic distribution is often a characteristic as wel as exibiting emergent behavior. According to
Fisher [Fisher 2006], geographic distribution supports the three independency properties (while not
being a necessary condition), and emergent behavior is the result of the subsystems having the three
independency properties. DeLaurentis [DeLaurentis 2005] adds to the characteristics heterogeneity (of
subsystems), networks (as the predominant means of connecting subsystems) and trans-domain
collaboration (the need for differrent disciplines to collaborate, i.e., engineering, economy, policy
makers etc.). Examples of SoS are typically indicated in military, transportation and avionic systems.

SoS is clearly about the design and engineering problems of combining existing systems into a larger
whole that yields new functionality, not available through any of the constituent systems. These
problems comprise the architectural principles of such combination, the engineering process and the
technical solutions. We examine some concepts that refer to this combining of (sub)systems to
understand the difference between monolithic systems (ML) and SoS.

System Integration
System Integration in the context of ML refers to the concept of synthesizing (independently developed)
subsystems. Typically, the specification of these subsystems follows from a decomposition of an original
design of an ML, which is a well-established engineering practice. The focus lies here on interface
definition, on integration methodology (e.g. horizontal and vertical integration), on managing and
reducing dependencies (coupling) and maximizing cohesion. The goal is to obtain a single integrated
system in which the subsystems are there for serving the combined goal.

Within SoS there is also a need to integrate subsystems but there are important differences. Fisher
[Fisher 2006] describes some implicit assumptions of system integration that are not true for SoS, viz.
that the architecture is frozen in an earlier stage of the design, that the control flow and data flow is
known, and that requirements as well as properties of subsystems are known upon integration. For SoS,
the requirements for subsystems are not specified in a hierarchical manner; the function of each
subsystem is defined by its original purpose as well as its own internal context, data, processes, etc. We
call this aspect uncorrelated requirements. Second, in case of SoS there are two types of control flow:
the control flow for the original purpose and the control flow coming from the SoS. We call this aspect
competition of control. The result is that the subsystems retain their own functionality as well as
independent existence (mentioned as operational and managerial independence before). Third, within
SoS there is no a priori architectural principle that guides the design of the subsystems. We call this
architectural diversity.

Interoperation
Interoperation refers to cooperative interactions between two or more partners to achieve objectives.
These objectives can be shared (e.g., manage the traffic in an area), but can also be private to each
partner and can be as simple as obeying actively some policy. E.g., in a client-server interaction, the
server achieves its goal by serving clients.

Premise to interoperability is the ability to communicate which in networks is addressed until the
transport layer in the OSI stack. On top of that meaningful information is exchanged and interpreted
between interfaces. Interoperation requires a certain trust between cooperating partners. In addition an
understanding is required on three aspects (which can be seen as stages in the interoperation): first, on
how to reach the interface (discovering the interface), second on how to perform the interoperation
(understanding the interface), and third, on how the interaction contributes to the objectives
(understanding the semantics).

Aspects of interoperation are defined in several domains with slight differences, but always following
this main line of reasoning. Within ML these three aspects can be entirely contained within the design,
e.g. through embedding of implicit or explicit assumptions or through protocol standardization. More
recent works on component based systems and distributed systems introduce concepts that allow late
binding like service discovery, service descriptions (e.g. within UPnP [UPnP Forum 2008]) and the Service
Oriented Architectural Style [Erl 2005]. Standards in semantic-level descriptions are RDF and OWL.

Interoperability within SoS needs to be based on a high-level description of goals and of services since
the architectural diversity implies that no knowledge is available about the inner workings of
subsystems. This is called semantic interoperability. This means that such late binding techniques needs
to be further investigated and developed for SoS. The separation between service and implementation
needs to be emphasized even further, in particular using rich service interfaces that include semantic
descriptions and that expose extra-functional information as well (see below).

Emergence
Emergent properties refer to properties exhibited by the system as a whole that cannot be attributed to
any of its subsystems in isolation [Steels 1991]. Examples are extra-functional properties like latency and
throughput as well as security, reliability and availability, which typically arise from system behavior
over time. Hence, also the term emergent behavior is often used. While in monolithic systems emergent
properties are typically addressed within the architecture giving them a place in the process of
hierarchical decomposition, within SoS these properties require explicit attention at subsystem
boundaries. In line with the discussion on interoperability, these properties must be managed at
subsystem interfaces.

Because of the properties of SoS there is an intrinsic uncertainty about the effect of operations, about
failures etc. This must be taken into account at subsystem boundaries, in particular, by adopting failures,
unpredictable behavior and conflicts of control as the natural mode of operation rather than as the
exception.

For SoS emergent functionality is also identified as a defining property. Such functionality is achieved
through interoperation. Since we cannot expect to have direct and detailed control within a subsystem,
emergent functionality must be the result of policy specification at subsystem boundaries. The
emergence can furthermore be the result from directed control (see below), or from self-organization.

Phenomena at the system level can have a weak or strong emergent character, depending on their
relation to well-known “laws” in the constituent sub-systems. Weak emergent behavior is unexpected,
strong emergent behavior is intrinsically not deducible from first principle truths of the constituent sub-
systems [Chalmers 2006].

Concept Monolithic systems
(ML)

ML assumptions Systems of Systems

Subsystem
Integration

. Horizontal and
vertical integration
. Interface and function
definition based on
design &
decomposition
. Reduce coupling,
maximize cohesion
. Subsystems have no
private goal

. Architecture frozen in
early design stage
. Known (and
controlled) control and
data flow
. Requirements and
properties of
subsystems known
upon integration

. Uncorrelated requirements:
…..Functions of subsystems not
selected by design
…..Subsystem behaviour
defined by original,
independent purpose and local
state
. Competition of control:
competing control flows from
SoS and subsystem
. Architectural diversity: no
common, frozen architecture
. Fully independent lifecycles
. Control: virtual, directed or
collaborative

Interoperation
. discover
interface
. understand (and
use) interface
operation
. understand
interface
semantics

. contained in design

. late binding and
semantic descriptions
(RDF, OWL, SOA)
. directed control

. knowledge about
semantics, embedded
in code
. knowledge about
particular technologies

. high-level description of goals
and services (semantic
interoperability)
. extend late-binding
techniques
. rich service interfaces,
including extra-functional
properties
. negotiation

Emergence
. properties of
systems as a
whole not to be
attributed to any
subsystem in
isolation
. weak: derivable
from known rules
in the subsystems
. strong:
essentially not-
deductible

. addressed within the
architecture
. weak
. not explicitly available
within the system

. emergent properties
addressed in
(de)composition

. make properties explicit at
subsystem boundaries (rich
interfaces)
. weak emergence based on
policy specification for
interoperation
. emergence through directed
control or self-organization

Figure 1: Summary of properties and comparison between Monolithic System and SoS

Classification
Maier [Maier 1998] discerns three types of SoS: virtual, directed, and collaborative SoS. A directed SoS
looks mostly like an ML with a centralized control. It means, in fact, that the restriction of managerial
independence is dropped. The distinction remains that subsystems can also function autonomously. In a
collaborative SoS the centralized control cannot enforce cooperation. Applications rely on the voluntary

collaboration between subsystems. In a virtual SoS there is no central control: they lack a central
agreement process upon purpose; this just emerges from the constituent systems.

In all three cases, but especially in the last two, a signaling type of interaction (‘commands’) is not the
right mode; instead, interoperation is based on negotiation.

Examining the earlier questions

What are engineering methodologies, processes methodologies, processes and
lifecycle defined for SoS engineering?
The research reported in the SoS domain is mainly of a reflective nature: researchers and practitioners
recognize that the problems they encounter go beyond traditional system design and integration. In
order to increase understanding they have generalized and subsequently taxonomized the concepts and
the problems, as summarized above.

Figure 2: distinction between System Engineering and SoS Engineering (from [Keating et. al. 2003])

Keating et al. [Keating et al. 2003] discuss SoS engineering in combination with systems engineering and
identify a number of differences between these domains (see Figure 2). They explain that a SoSE process
must address issues differently from traditional systems engineering and address system evaluation and
evolution as well as system transformation. DSL-based generation of agent (collaborative SoS (directed
SoS) are examples of initiatives to manage evolution / transformation / evaluation of systems.

Lewis et. al. [Lewis et.al. 2008] describe SoSE as addressing a double challenge, viz., of generating
responses extremely flexibly in changing situations while collaborating effectively across system
boundaries. They define an abstract lifecycle addressing the software development in systems of
systems. This lifecycle consists of three steps:

1. The independent subsystems contribute a pool of software elements.
2. SoS engineers search through this pool for elements to build integrated SoS capabilities.
3. Subsequently, the relation between the SoS and the original subsystem needs to be established.

The nature of this relation defines the dependencies between subsystem and the SoS. For
example, if the SoS requires access to certain data the subsystem must allow this access which
has to be aligned with the local security policies.

This lifecycle appears to approach the design problem from a similar perspective as Component-Based
Software Engineering, i.e., by composing functionality from existing components. The resulting problems
are resolved after the fact. In particular, solving problems like control conflicts, performance problems
and security conflicts seem to be difficult to address in this way. In addition, the approach seems rather
static. Instead, we need to develop an SoSE process in which functionality of a subsystem is represented
by services using rich interfaces that admit management of extra-functional properties. By using policies
at interfaces we separate the negotiation from interaction.

Not many specific engineering methodologies for SoS are in place. Nevertheless, the state-of-the-art for
monolithic systems is relevant to take into account when considering SoS engineering. The role of
reference designs and architectures (e.g. the time-triggered architecture), integration verification and
tools for that, application of standards for connectivity and middleware (e.g. AUTOSAR), ever increasing
use of simulators, software synthesis/code generation, and verification tools is eminent and increasing.
Rather new for SoS would be the need for fast integration techniques (smart adapters, system-level
awareness for control of operations, design-space exploration optimizing choice and opportunity, test
policies). These techniques are only partly available.

Borth et al [Borth 2012] argue that central to the challenge of SoSE is the fact that the system lifecycles
have become truly independent. This causes that engineering processes become non-monotonic, divide-
and-conquer approaches fail for design, integration, and test, and the consequences of failures cannot
be judged easily. Nevertheless, there is a gradual increase going from cooperative systems in a known
environment to adaptive systems in an evolving systems-of-systems environment, meaning that not all
techniques and methods have to be in place from the start. Ultimately, SoS development requires a new
cultural setting in many companies, i.e. involvement of other systems that are not (fully) under control.

What are architecting principles and perhaps styles suggested for SoS?
As discussed before, the essential ingredients of SoS follow from the independence of the subsystems.
The architecting principles must therefore address these properties. Operational and managerial
independence require negotiations at interfaces to obtain access and budgets. Evolutionary
independence requires loose coupling techniques and binding based on introspection and rich
descriptions. In addition it calls for fault tolerance techniques taking unexpected behavior as the norm.
Taking this further, self-organization or a health subsystem is necessary. Plug-and-play is the best known
form of self-organization, but a newer form is found in cognitive networks. Agent-based systems provide
means to build such systems. Explicit reasoning of the system about its own health is a relatively new
field, closely related to adaptive systems and scenario detection mechanisms. Machine learning and
anomaly detection have been around for some time, but only very application-specific.

In order to enable proper functioning of systems in a system-of-systems context, the observe-and-
compare-with-expectations paradigm appears inevitable. [Borth et al.] claim that this should be done at
multiple levels in the system, resulting in local and global self-reflection strategies.

In the literature four architectural aspects are further emphasized. The first is that SoS is based on
communication and networking. The required flexibility and decoupling of operating systems and
languages, the robustness for device failures and the likes are naturally achieved by placing system
boundaries at networks. Although it might be debatable, this seems a good first choice.

Second, the concept of Service Oriented Architectures is mentioned as a relevant style since it decouples
clearly the concepts of service, implementation and specification. In the Genesys project (FP7) [Genesys
2009], a standard service-oriented reference architecture for embedded systems is proposed and
several follow-up projects to deploy this have been defined. The current uses of SOA, however, might
not be adequate as it often assumes shared ontologies and centralized discovery mechanisms that may
not be appropriate across systems. In addition, there is no clear and integrated general concept of
negotiation, although in the agent-based systems, standards for negotiation protocols have been
developed, such as the contract net interaction protocol (CNP) by FIPA. The use of services and explicit
specifications admits dynamic integration using model-based adapter technology, where formal
methods support compliancy with specifications on the basis of model descriptions.

Third, some authors mention that in order for systems to evolve further, stable intermediate subsystems
are required. Hence, in order to build larger systems with more functionality we have to leave the
subsystems closed, and build on top of their interfaces. Leaving a system closed means really not
interfering with its private architecture, operation, management, evolution, installation etc., but also
that it is essentially self-contained in terms of self-adaptation and management. This includes join-and-
leave scenarios: what happens with the system if constituent systems are joining and leaving at run-
time. This especially imposes challenges on integration and testing of the resulting SOS, which have to
take into account runtime integration and testing constituent systems with profoundly different
architectures.

Fourth, the following may be considered as a general principle: any addition or change added to the SoS
must at least retain existing functionality and quality within the subsystems. Differently phrased,
changes must make things better.

Concluding, the concepts of Service Oriented Architectures will be the basis to deal with policies and
negotiation at system boundaries. Rather than direct access to internal services a semantic abstraction
is provided that admits semantic interoperability but also the negotiation of reservation and access
control.

The last two questions are left open for now.

Which existing examples from SoS can we learn from that have benefited from
recent insight?
Maritime situational awareness perhaps. The architecture development for such systems have learned
that the information flow view is very relevant, and the ability to deal with uncertain information.

Which concrete solutions exist to the set of problems and issues listed and what
are the open issues?
DoD SoSes and net-centric systems (USA) have given insights in the essential engineering artifacts that
can be used as guidance for the systems engineering approaches of SOS [DoD 2008].
Traffic information systems: radio & TMC broadcast, combined with dynamic road signs; alternatively,
TMC in conjunction with navigation systems that also collect GSM location data to predict the traffic
situation better.

Finally, a generic diagram summarizes the structural aspects of the above discussion. It is an example
how an integration framework for Sstems of Systems can be setup.

Figure 3: Conceptual diagram of Systems of Systems integration for the case of Urban Subsystems (Smart Cities)

References

[Aarts 2003] Aarts, E., Marzano, S. (editors), “The New Everyday: Visions of Ambient Intelligence”, 010
Publishers, 2003

[Borth 2011] Borth, M., and van Loo, S.J., “Engineering Resilient Systems-of-Systems”, CSD&M 2011,
December 7-9, 2011.

[Chalmers 2006] Chalmers, D.J., “Varieties of Emergence”, Chapter 11, of Clayton, P., and
Davies, P. (eds.), ”The Re-Emergence of Emergence: The Emergentist
Hypothesis from Science to Religion”, Oxford University Press, 2006

[DeLaurentis 2005] DeLaurentis, D. “Understanding Transportation as a System of Systems Design
Problem,” 43rd AIAA Aerospace Sciences Meeting, Reno, Nevada, January 10-13, 2005. AIAA-2005-0123.

[DoD 2008] Office of the Deputy Under Secretary of Defense for Acquisition and Technology, Systems
and Software Engineering. Systems Engineering Guide for Systems of Systems, Version 1.0. Washington,
DC: ODUSD(A&T)SSE, 2008.

[Erl 2005] Erl, Th., “Service-Oriented Architecture: Concepts, Technology, and Design”, Prentice Hall PTR,
Upper Saddle River, NJ, USA, 2005

[Fisher 2006] David A. Fisher, “An Emergent Perspective on Interoperation in Systems of Systems”,
TECHNICAL REPORT CMU/SEI-2006-TR-003, ESC-TR-2006-003.

[Genesys 2009] Obermaisser, R., and Kopetz, H., “A Candidate for an Artemis cross-domain Reference
Architecture for Embedded Systems”, SVH, Germany, 2009

[Lewis et. al. 2008] Grace Lewis, Ed Morris, Pat Place, Soumya Simanta, Dennis Smith, Lutz Wrage,
“Engineering Systems of Systems”, SysCon 2008 - IEEE International Systems Conference, Montreal,
Canada, April 7-10, 2008.

[Keating et. al. 2003] Charles Keating et. al., “Systems of Systems Engineering”, Engineering Mangement
Journal, Sept 2003, 15,3.

[Koestler 1967] Koestler, A.,” The Ghost in the Machine”, 1967. (1990 reprint edition ed.). Penguin
Group. ISBN 0-14-019192-5.

[Maier 1998] Maier, M.W., "Architecting Principles for System of Systems," Systems Engineering, Vol. 1,
No. 4, 1998, pp. 267-284.
[Poseidon 2012] van de Laar, P., Tretmans, J., and Borth, M., “Situation Awareness with Systems of
Systems”, Springer, to be published.

[SAFESPOT 2009] Integrated project FP7, “Cooperative vehicles and road infrastructure for road safety”.

[SOFIA 2009] Artemis project, “Smart objects for intelligent applications”.

[Steels 1991] Steels, L., “Towards a theory of emergent functionality”, Proceedings of the
First International Conference on Simulation of Adaptive Behavior, 451-461,
February 1991

[UPnP Forum 2008] UPnP Forum, “UPnP Device Architecture 1.0”, Document Revision Date 15 October
2008.

