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Introduction 
  ‘Systems-of-systems’ (SoS) is a relatively modern term for systems that are composed of independent 
(autonomous) subsystems that are full-blown systems by themselves in every way. While there is 
growing awareness of its importance there is no clear agreement about the architectural principles 
guiding the design of SoS nor about the process of engineering them.  
 
Thinking in terms of SoS brings a 180o change in viewpoint. In traditional embedded systems design 
(being a subsystem in itself) we focus on how to effectively design those embedded subsystems to 
implement the functions of a device.This device plays a role in the physical world. With the introduction 
of embedded networking we move to cyber-physical systems in which these embedded subsystems now 
form the nodes in a larger whole, also crossing the borderlines of different systems. From this 
perspective we regard the larger ICT context as the enabler of the involved embedded subsystems. SoS 
is about how to design, engineer, maintain and evolve a composition of subsystems while 
acknowledging the fact that these subsystems remain independent, serving their own functions, with 
their own management and lifecycles. 
 
In this section we discuss what SoS really is about based on a review of existing literature on the topic. 
We examine the state of the work in this area, focusing on the following aspects:  

a) What are engineering methodologies, processes and lifecycle management defined for SoS 
engineering? 

b) What are architecting principles and perhaps styles suggested for SoS? 
c) Which existing examples of SoS, that have benefited from recent insight, can we learn from?  
d) Which concrete solutions exist, and what are open issues? 

As above we speak about ‘subsystems’ in order to discriminate between the parts. Subsystems, 
however, are complete systems by themselves as explained above. 

Systems-of-Systems 
The work of Maier [Maier 1998] is one of the earlier systematic discussions on SoS. Maier introduces 
some defining properties intrinsic to an SoS: operational independence (subsystems have an 
autonomous behavior, goal and useful existence), managerial independence (subsystems are managed 
by different authorities) and evolutionary independence (subsystems evolve independently). In addition, 
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geographic distribution is often a characteristic as wel as exibiting emergent behavior. According to 
Fisher [Fisher 2006], geographic distribution supports the three independency properties (while not 
being a necessary condition), and emergent behavior is the result of the subsystems having the three 
independency properties. DeLaurentis [DeLaurentis 2005] adds to the characteristics heterogeneity (of 
subsystems), networks (as the predominant means of connecting subsystems) and trans-domain 
collaboration (the need for differrent disciplines to collaborate, i.e., engineering, economy, policy 
makers etc.). Examples of SoS are typically indicated in military, transportation and avionic systems. 
 
SoS is clearly about the design and engineering problems of combining existing systems into a larger 
whole that yields new functionality, not available through any of the constituent systems. These 
problems comprise the architectural principles of such combination, the engineering process and the 
technical solutions. We examine some concepts that refer to this combining of (sub)systems to 
understand the difference between monolithic systems (ML) and SoS. 

System Integration 
System Integration in the context of ML refers to the concept of synthesizing (independently developed) 
subsystems. Typically, the specification of these subsystems follows from a decomposition of an original 
design of an ML, which is a well-established engineering practice. The focus lies here on interface 
definition, on integration methodology (e.g. horizontal and vertical integration), on managing and 
reducing dependencies (coupling) and maximizing cohesion.  The goal is to obtain a single integrated 
system in which the subsystems are there for serving the combined goal. 
 
Within SoS there is also a need to integrate subsystems but there are important differences. Fisher 
[Fisher 2006] describes some implicit assumptions of system integration that are not true for SoS, viz. 
that the architecture is frozen in an earlier stage of the design, that the control flow and data flow is 
known, and that requirements as well as properties of subsystems are known upon integration. For SoS, 
the requirements for subsystems are not specified in a hierarchical manner; the function of each 
subsystem is defined by its original purpose as well as its own internal context, data, processes, etc. We 
call this aspect uncorrelated requirements. Second, in case of SoS there are two types of control flow: 
the control flow for the original purpose and the control flow coming from the SoS. We call this aspect 
competition of control. The result is that the subsystems retain their own functionality as well as 
independent existence (mentioned as operational and managerial independence before). Third, within 
SoS there is no a priori architectural principle that guides the design of the subsystems. We call this 
architectural diversity. 

Interoperation 
Interoperation refers to cooperative interactions between two or more partners to achieve objectives. 
These objectives can be shared (e.g., manage the traffic in an area), but can also be private to each 
partner and can be as simple as obeying actively some policy. E.g., in a client-server interaction, the 
server achieves its goal by serving clients.  
 
Premise to interoperability is the ability to communicate which in networks is addressed until the 
transport layer in the OSI stack. On top of that meaningful information is exchanged and interpreted 
between interfaces. Interoperation requires a certain trust between cooperating partners. In addition an 
understanding is required on three aspects (which can be seen as stages in the interoperation): first, on 
how to reach the interface (discovering the interface), second on how to perform the interoperation 
(understanding the interface), and third, on how the interaction contributes to the objectives 
(understanding the semantics). 



 
Aspects of interoperation are defined in several domains with slight differences, but always following 
this main line of reasoning. Within ML these three aspects can be entirely contained within the design, 
e.g. through embedding of implicit or explicit assumptions or through protocol standardization. More 
recent works on component based systems and distributed systems introduce concepts that allow late 
binding like service discovery, service descriptions (e.g. within UPnP [UPnP Forum 2008]) and the Service 
Oriented Architectural Style [Erl 2005]. Standards in semantic-level descriptions are RDF and OWL. 
 
Interoperability within SoS needs to be based on a high-level description of goals and of services since 
the architectural diversity implies that no knowledge is available about the inner workings of 
subsystems. This is called semantic interoperability. This means that such late binding techniques needs 
to be further investigated and developed for SoS. The separation between service and implementation 
needs to be emphasized even further, in particular using rich service interfaces that include semantic 
descriptions and that expose extra-functional information as well (see below).  

Emergence 
Emergent properties refer to properties exhibited by the system as a whole that cannot be attributed to 
any of its subsystems in isolation [Steels 1991]. Examples are extra-functional properties like latency and 
throughput as well as security, reliability and availability, which typically arise from system behavior 
over time. Hence, also the term emergent behavior is often used. While in monolithic systems emergent 
properties are typically addressed within the architecture giving them a place in the process of 
hierarchical decomposition, within SoS these properties require explicit attention at subsystem 
boundaries. In line with the discussion on interoperability, these properties must be managed at 
subsystem interfaces.  
 
Because of the properties of SoS there is an intrinsic uncertainty about the effect of operations, about 
failures etc. This must be taken into account at subsystem boundaries, in particular, by adopting failures, 
unpredictable behavior and conflicts of control as the natural mode of operation rather than as the 
exception.  
 
For SoS emergent functionality is also identified as a defining property. Such functionality is achieved 
through interoperation. Since we cannot expect to have direct and detailed control within a subsystem, 
emergent functionality must be the result of policy specification at subsystem boundaries. The 
emergence can furthermore be the result from directed control (see below), or from self-organization. 
 
Phenomena at the system level can have a weak or strong emergent character, depending on their 
relation to well-known “laws” in the constituent sub-systems. Weak emergent behavior is unexpected, 
strong emergent behavior is intrinsically not deducible from first principle truths of the constituent sub-
systems [Chalmers 2006]. 
  



 

Concept Monolithic systems 
(ML) 

ML assumptions Systems of Systems 

Subsystem 
Integration 

. Horizontal and 
vertical integration 
. Interface and function 
definition based on 
design & 
decomposition 
. Reduce coupling, 
maximize cohesion 
. Subsystems have no 
private goal 

. Architecture frozen in 
early design stage 
. Known (and 
controlled) control and 
data flow 
. Requirements and 
properties of 
subsystems known 
upon integration 

. Uncorrelated requirements:  
…..Functions of subsystems not 
selected by design 
…..Subsystem behaviour 
defined by original, 
independent purpose and local 
state 
. Competition of control: 
competing control flows from 
SoS and subsystem 
. Architectural diversity: no 
common, frozen architecture 
. Fully independent lifecycles 
. Control: virtual, directed or 
collaborative 

Interoperation 
. discover 
interface 
. understand (and 
use) interface 
operation 
. understand 
interface 
semantics 

. contained in design 

. late binding and 
semantic descriptions 
(RDF, OWL, SOA) 
. directed control 

. knowledge about 
semantics, embedded 
in code 
. knowledge about 
particular technologies 

. high-level description of goals 
and services (semantic 
interoperability) 
. extend late-binding 
techniques 
. rich service interfaces, 
including extra-functional 
properties 
. negotiation 

Emergence 
. properties of 
systems as a 
whole not to be 
attributed to any 
subsystem in 
isolation 
. weak: derivable 
from known rules 
in the subsystems 
. strong: 
essentially not-
deductible 

. addressed within the 
architecture 
. weak 
. not explicitly available 
within the system 

. emergent properties 
addressed in 
(de)composition 

. make properties explicit at 
subsystem boundaries (rich 
interfaces) 
. weak emergence based on 
policy specification for 
interoperation 
. emergence through directed 
control or self-organization 

 
Figure 1: Summary of properties and comparison between Monolithic System and SoS 

Classification 
Maier [Maier 1998] discerns three types of SoS: virtual, directed, and collaborative SoS. A directed SoS 
looks mostly like an ML with a centralized control. It means, in fact, that the restriction of managerial 
independence is dropped. The distinction remains that subsystems can also function autonomously. In a 
collaborative SoS the centralized control cannot enforce cooperation. Applications rely on the voluntary 



collaboration between subsystems. In a virtual SoS there is no central control: they lack a central 
agreement process upon purpose; this just emerges from the constituent systems. 
 
In all three cases, but especially in the last two, a signaling type of interaction (‘commands’) is not the 
right mode; instead, interoperation is based on negotiation. 
 

Examining the earlier questions 
 

What are engineering methodologies, processes methodologies, processes and 
lifecycle defined for SoS engineering? 
The research reported in the SoS domain is mainly of a reflective nature: researchers and practitioners 
recognize that the problems they encounter go beyond traditional system design and integration. In 
order to increase understanding they have generalized and subsequently taxonomized the concepts and 
the problems, as summarized above. 
 
 

 
 

Figure 2: distinction between System Engineering and SoS Engineering (from [Keating et. al. 2003]) 

Keating et al. [Keating et al. 2003] discuss SoS engineering in combination with systems engineering and 
identify a number of differences between these domains (see Figure 2). They explain that a SoSE process 
must address issues differently from traditional systems engineering and address system evaluation and 
evolution as well as system transformation. DSL-based generation of agent (collaborative SoS (directed 
SoS) are examples of initiatives to manage evolution / transformation / evaluation of systems. 
 
Lewis et. al. [Lewis et.al. 2008] describe SoSE as addressing a double challenge, viz., of generating 
responses extremely flexibly in changing situations while collaborating effectively across system 
boundaries. They define an abstract lifecycle addressing the software development in systems of 
systems. This lifecycle consists of three steps: 

1. The independent subsystems contribute a pool of software elements. 
2. SoS engineers search through this pool for elements to build integrated SoS capabilities. 
3. Subsequently, the relation between the SoS and the original subsystem needs to be established. 

The nature of this relation defines the dependencies between subsystem and the SoS. For 
example, if the SoS requires access to certain data the subsystem must allow this access which 
has to be aligned with the local security policies. 



 
This lifecycle appears to approach the design problem from a similar perspective as Component-Based 
Software Engineering, i.e., by composing functionality from existing components. The resulting problems 
are resolved after the fact. In particular, solving problems like control conflicts, performance problems 
and security conflicts seem to be difficult to address in this way. In addition, the approach seems rather 
static. Instead, we need to develop an SoSE process in which functionality of a subsystem is represented 
by services using rich interfaces that admit management of extra-functional properties. By using policies 
at interfaces we separate the negotiation from interaction. 
 
Not many specific engineering methodologies for SoS are in place. Nevertheless, the state-of-the-art for 
monolithic systems is relevant to take into account when considering SoS engineering. The role of 
reference designs and architectures (e.g. the time-triggered architecture), integration verification and 
tools for that, application of standards for connectivity and middleware (e.g. AUTOSAR), ever increasing 
use of simulators, software synthesis/code generation, and verification tools is eminent and increasing. 
Rather new for SoS would be the need for fast integration techniques (smart adapters, system-level 
awareness for control of operations, design-space exploration optimizing choice and opportunity, test 
policies). These techniques are only partly available. 
 
Borth et al [Borth 2012] argue that central to the challenge of SoSE is the fact that the system lifecycles 
have become truly independent. This causes that engineering processes become non-monotonic, divide-
and-conquer approaches fail for design, integration, and test, and the consequences of failures cannot 
be judged easily. Nevertheless, there is a gradual increase going from cooperative systems in a known 
environment to adaptive systems in an evolving systems-of-systems environment, meaning that not all 
techniques and methods have to be in place from the start. Ultimately, SoS development requires a new 
cultural setting in many companies, i.e. involvement of other systems that are not (fully) under control. 

What are architecting principles and perhaps styles suggested for SoS? 
As discussed before, the essential ingredients of SoS follow from the independence of the subsystems. 
The architecting principles must therefore address these properties. Operational and managerial 
independence require negotiations at interfaces to obtain access and budgets. Evolutionary 
independence requires loose coupling techniques and binding based on introspection and rich 
descriptions. In addition it calls for fault tolerance techniques taking unexpected behavior as the norm. 
Taking this further, self-organization or a health subsystem is necessary. Plug-and-play is the best known 
form of self-organization, but a newer form is found in cognitive networks. Agent-based systems provide 
means to build such systems. Explicit reasoning of the system about its own health is a relatively new 
field, closely related to adaptive systems and scenario detection mechanisms. Machine learning and 
anomaly detection have been around for some time, but only very application-specific. 
 
In order to enable proper functioning of systems in a system-of-systems context, the observe-and-
compare-with-expectations paradigm appears inevitable. [Borth et al.] claim that this should be done at 
multiple levels in the system, resulting in local and global self-reflection strategies. 
 
In the literature four architectural aspects are further emphasized. The first is that SoS is based on 
communication and networking. The required flexibility and decoupling of operating systems and 
languages, the robustness for device failures and the likes are naturally achieved by placing system 
boundaries at networks. Although it might be debatable, this seems a good first choice.  
 



Second, the concept of Service Oriented Architectures is mentioned as a relevant style since it decouples 
clearly the concepts of service, implementation and specification. In the Genesys project (FP7) [Genesys 
2009], a standard service-oriented reference architecture for embedded systems is proposed and 
several follow-up projects to deploy this have been defined. The current uses of SOA, however, might 
not be adequate as it often assumes shared ontologies and centralized discovery mechanisms that may 
not be appropriate across systems. In addition, there is no clear and integrated general concept of 
negotiation, although in the agent-based systems, standards for negotiation protocols have been 
developed, such as the contract net interaction protocol (CNP) by FIPA. The use of services and explicit 
specifications admits dynamic integration using model-based adapter technology, where formal 
methods support compliancy with specifications on the basis of model descriptions. 
 
Third, some authors mention that in order for systems to evolve further, stable intermediate subsystems 
are required. Hence, in order to build larger systems with more functionality we have to leave the 
subsystems closed, and build on top of their interfaces. Leaving a system closed means really not 
interfering with its private architecture, operation, management, evolution, installation etc., but also 
that it is essentially self-contained in terms of self-adaptation and management. This includes join-and-
leave scenarios: what happens with the system if constituent systems are joining and leaving at run-
time. This especially imposes challenges on integration and testing of the resulting SOS, which have to 
take into account runtime integration and testing constituent systems with profoundly different 
architectures. 
 
Fourth, the following may be considered as a general principle: any addition or change added to the SoS 
must at least retain existing functionality and quality within the subsystems. Differently phrased, 
changes must make things better.  
 
Concluding, the concepts of Service Oriented Architectures will be the basis to deal with policies and 
negotiation at system boundaries. Rather than direct access to internal services a semantic abstraction 
is provided that admits semantic interoperability but also the negotiation of reservation and access 
control. 
 
The last two questions are left open for now. 

Which existing examples from SoS can we learn from that have benefited from 
recent insight?  
Maritime situational awareness perhaps. The architecture development for such systems have learned 
that the information flow view is very relevant, and the ability to deal with uncertain information. 

Which concrete solutions exist to the set of problems and issues listed and what 
are the open issues? 
DoD SoSes and net-centric systems (USA) have given insights in the essential engineering artifacts that 
can be used as guidance for the systems engineering approaches of SOS [DoD 2008]. 
Traffic information systems: radio & TMC broadcast, combined with dynamic road signs; alternatively, 
TMC in conjunction with navigation systems that also collect GSM location data to predict the traffic 
situation better. 
 
Finally, a generic diagram summarizes the structural aspects of the above discussion. It is an example 
how an integration framework for Sstems of Systems can be setup.  



 

 
Figure 3: Conceptual diagram of Systems of Systems integration for the case of Urban Subsystems (Smart Cities) 
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